
Optimizing Stencil Computations for NVIDIA Kepler GPUs

Naoya Maruyama
RIKEN Advanced Institute for Computational

Science
Kobe, Japan

nmaruyama@riken.jp

Takayuki Aoki
Tokyo Institute of Technology

Tokyo, Japan
taoki@gsic.titech.ac.jp

ABSTRACT
We present a series of optimization techniques for stencil
computations on NVIDIA Kepler GPUs. Stencil computa-
tions with regular grids had been ported to the older gen-
erations of NVIDIA GPUs with significant performance im-
provements thanks to the higher memory bandwidth than
conventional CPU-only systems. However, because of the
architectural changes introduced with the latest generation
of the GPU architecture, Kepler, we show that existing im-
plementation strategies used for such older GPUs are not as
effective on Kepler as before. To fully exploit the potential
performance of the latest generation of the GPU architec-
ture, our implementation method uses shared memory for
better data locality combined with warp specialization for
higher instruction throughput. Our method achieves ap-
proximately 80% of the estimated peak performance by the
roofline model, and even higher performance with temporal
blocking.

1. INTRODUCTION
GPU accelerators are increasingly used in various fields of

scientific simulations because of superior performance and
power efficiency. The peak theoretical memory bandwidth
of a single NVIDIA Kepler K20X GPU reaches up to 250
GB/s. Such high memory system performances are par-
ticularly important for many of stencil kernels, which are
typically memory intensive. In fact, past studies reported
that stencil computations with regular Cartesian grids can
be ported to GPU with significant performance acceleration
compared to conventional CPU-only systems [10, 11].

Effective optimization techniques for stencils include lo-
cality optimization by loop blocking. On GPUs, there are
several different on-chip memories that could be used for
blocking. Shared memory is a programmable memory that
can be accessed with very low latency, and has been used
for blocking in many past studies [1, 6]. It was particularly
important to optimize GPU programs with shared memory
blocking when using older generations of NVIDIA GPUs;

HiStencils 2014
First International Workshop on High-Performance Stencil Computations
January 21, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://www.exastencils.org/histencils/2014/

however, we have also observed that such manual optimiza-
tions are not always necessary with recent GPU architecture
called Fermi, where DRAM loads are cached at L1 cache.
Although GPU cache size is typically very small, it is of-
ten very effective for regular data access patterns in stencils
with Cartesian grids, allowing good performance even with-
out manual shared memory blocking [11].

One of the major architectural changes in Kepler, the most
recently released GPU architecture by NVIDIA, is that L1
cache is not used for DRAM load caching, but only used
for register spilling [9]. Therefore, stencil kernels written
for Fermi GPUs with an assumption that redundant local-
ized data accesses are automatically cached at L1 cache may
not perform as efficiently on Kepler as on Fermi. Since the
new architecture also introduced a number of major and mi-
nor changes in hardware configurations, it is important to
examine stencil kernel performance on Kepler GPUs with
particular focus on memory access optimizations.

This paper evaluates the performance of a 7-point 3-D
stencil on Fermi and Kepler with a series of memory access
optimizations.1 We first begin with a baseline program that
is written in a straightforward way, and apply loop block-
ing at registers and shared memory. We also extend the
stencil with temporal blocking for further saving DRAM ac-
cesses [4, 7, 12, 14, 15]. While these manual blocking op-
timizations with shared memory should in theory improve
performance in memory-bound stencil computations, its ef-
fectiveness may by limited by the constraints imposed by
the GPU compute architecture and limited on-chip mem-
ory capacity. Although stencils with Cartesian grids mostly
consist of regular computation patterns, irregular processing
of halo regions can have large performance impacts due to
the wide-vector execution model. In fact, several past stud-
ies reported that temporal blocking is not effective for 3-D
stencil problems [4, 15]. We study several implementation
techniques for shard memory blocking, including those us-
ing texture memory and warp specialization, and attempt
to answer the following questions:

• How does stencil programs optimized for Fermi per-
form on Kepler?

• How much performance gain can be obtained with
shared memory blocking?

• How close to peak performance can be obtained in
stencil computations on GPUs?

1All program code is available for download at http://
github.com/naoyam.



1 // trip count of the time loop
2 int count;
3 // 3-D arrays of size nx*ny*nz
4 float f1[nx,ny,nz];
5 float f2[nx,ny,nz];
6 // coefficient variables
7 float cc, cw, ce, cs, cn, cb, ct;
8
9 // Time loop executing for count iterations

10 repeat count times
11 // update all grid points from f1 to f2
12 for (x,y,z) in nx*ny*nz
13 // 7-point stencil where accessing exterior
14 // points is replaced with nearby boundary points
15 int w = (x == 0) ? 0 : -1;
16 int e = (x == nx-1) ? 0 : 1;
17 int n = (y == 0) ? 0 : -1;
18 int s = (y == ny-1) ? 0 : 1;
19 int b = (z == 0) ? 0 : -1;
20 int t = (z == nz-1) ? 0 : 1;
21 f2[x,y,z] = cc*f1[x,y,z] + cw*f1[x+w,y,z]
22 + ce*f1[x+e,y,z] + cs*f1[x,y+s,z]
23 + cn*f1[x,y,z+n] + cb*f1[x,y,z+b]
24 + ct*f1[x,y,z+t];
25 swap f1, f2;
26 end for
27 end repeat

Figure 1: Pseudo code for the 7-point diffusion sten-
cil.

Our performance studies using both Fermi and Kepler
GPUs reveal that the shared memory blocking with warp
specialization is highly effective in achieving optimal perfor-
mance on Kepler, but not on Fermi. Common implementa-
tion techniques to use the shared memory, such as [6] and
[10], however, is shown to be less effective. We also show
that temporal blocking with warp specialization can further
improve the performance. Overall, our optimized implemen-
tations achieve approximately 80% of the estimated peak
performance by the roofline model, and even higher perfor-
mance with temporal blocking on Kepler. While the studies
in this paper are limited to a 7-point stencil code, we believe
that our findings would give a useful guideline for optimizing
other stencils for NVIDIA GPUs.

2. TARGET STENCIL
As an example of stencil, we use a simple 7-point stencil

that computes a diffusion equation on 3-D domains of single-
precision floating-point data. Figure 1 shows its pseudo
code. Notice that each point is updated by accessing six
nearest neighbor points as well as its own previous value
(i.e., f1[x,y,z]) with an exception for boundary points. For
each boundary point, neighbor access that falls outside the
defined grid area is replaced by its own value (lines 15-20).
In this paper, we evaluate and optimize the performance of
this stencil on a single GPU device.

The performance of the stencil for a given architecture can
be estimated based on the roofline model [13]. As shown in
the pseudo code, an update of a single point requires 13
single-precision FP operations, so each iteration performs
13 × nx × ny × nz operations. To simplify modeling of
DRAM accesses, we assume that for each iteration once ar-
ray points are loaded from memory, they remain on cache for
that iteration. This is an optimistic assumption for problem
sizes larger than the last-level cache size, which is typically
the case with reasonable problem sizes for realistic compu-
tational fluid simulations. Based on the assumption, the

size of data loaded and stored per iteration is modeled as
nx× ny× nz× sizeof(float) ∗ 2 bytes. Thus, the compute
intensity, defined as flop per DRAM byte, is calculated as

13 × nx× ny× nz

nx× ny× nz× sizeof(float) ∗ 2
= 1.625.

The intensity clearly indicates that the performance of the
stencil on a GPU is bounded by its DRAM bandwidth. For
example, the performance of the latest NVIDIA GPU Ke-
pler is as high as 4 TFLOPS (single precision) [9], whereas
the theoretical peak memory bandwidth is 250 GB/s. Op-
timizing memory accesses, therefore, is the most important
strategy in improving the performance of the stencil. In par-
ticular, although the above modeling assumes the perfect
data locality that all grid points in array f1 are loaded from
DRAM at most once and that subsequent accesses are from
the cache, the constraints imposed by the GPU architecture
require non-trivial tuning as presented in this paper.

3. OVERVIEW OF KEPLER GPU ARCHI-
TECTURE

This section gives a brief overview of the NVIDIA Tesla
Kepler GPU [9], which is the main target of our study in
this paper. We particularly focus on the differences between
Kepler and the previous generation of NVIDIA GPU archi-
tecture called Fermi. Since the specific Kepler GPU used in
this paper is Tesla K20X, we first present a brief overview
of K20X, and explain how memory accesses in CUDA are
mapped to actual data movements in the architecture.

The K20X GPU consists of a GK110 processor equipped
with 6 GB of GDDR5 memory. The GK110 processor in
K20X consists of 14 streaming multiprocessors (SM), each
of which consists of 192 CUDA cores clocked at 732 MHz,
achieving 3.95 TFLOPS in single-precision peak performance.
Each SM has an on-chip memory area of 64 KB that can be
accessed both explicitly as shared memory and implicitly as
L1 cache. It also has a register file of 256 KB, which is dou-
bled from Fermi. In addition to these memories, the GK110
processor is equipped with a read-only cache of 48 KB per
SM, which is an extension of the texture cache available
in the older generations of GPUs, but becomes more easily
accessible in Kepler. Furthermore, 1.5 MB of L2 cache is
shared by all 14 SMs.

Each memory access to CUDA global memory is first ser-
viced by the off-chip GDDR memory. The same coalescing
rule as enforced in Fermi is still applicable in Kepler [8].
However, a significant change in memory accesses is that
global memory loads and stores are not cached in the L1
cache on Kepler, whereas on Fermi load accesses are cached
by default. We have observed that the Fermi L1 cache is
often very effective for reducing the DRAM bandwidth pres-
sure in stencil computations with regular grids, making ex-
plicit blocking with the shared memory almost unnecessary
in such computations. In fact, our optimized CUDA imple-
mentation of a phase-field simulation application [11], which
won a 2011 Gordon Bell Award, did not use shared memory
since we saw no performance benefit on Fermi GPUs. The
same implementation, however, would not perform as effi-
ciently on Kepler as on Fermi since global memory loads are
no longer cached.

Instead of relying on automatic caching with the L1 cache,
the shared memory and read-only cache can be used on Ke-
pler, both of which require code modifications. In CUDA,



1 __global__ void baseline(float *f1, float *f2,
2 int nx, int ny, int nz,
3 float ce, float cw, float cn,
4 float cs, float ct, float cb,
5 float cc) {
6 int xy = nx * ny;
7 int i = blockDim.x * blockIdx.x + threadIdx.x;
8 int j = blockDim.y * blockIdx.y + threadIdx.y;
9 const int block_z = nz / gridDim.z;

10 int k = block_z * blockIdx.z;
11 const int k_end = k + block_z;
12 int c = i + j * nx + k * xy;
13 #pragma unroll
14 for (; k < k_end; ++k) {
15 int w = (i == 0) ? c : c - 1;
16 int e = (i == nx-1) ? c : c + 1;
17 int n = (j == 0) ? c : c - nx;
18 int s = (j == ny-1) ? c : c + nx;
19 int b = (k == 0) ? c : c - xy;
20 int t = (k == nz-1) ? c : c + xy;
21 f2[c] = cc * f1[c] + cw * f1[w] + ce * f1[e] + cs * f1[s]
22 + cn * f1[n] + cb * f1[b] + ct * f1[t];
23 c += xy;
24 }
25 return;
26 }

Figure 2: Baseline stencil kernel.

the shared memory can be explicitly used as a scratchpad
memory by annotating arrays with the __shared__ attribute.
The read-only cache can be explicitly used by the __ldg in-
trinsic or the CUDA compiler automatically uses the read-
only cache when arrays are declared with the const and
__restrict__ annotations. We present our optimization
techniques using those memories in Section 5.

4. BASELINE IMPLEMENTATION AND PER-
FORMANCE

A straightforward CUDA implementation of the stencil
is shown in Figure 2. We use this code as the baseline for
subsequent performance evaluations and optimizations. It
partitions the 3-D domains of size nx × ny × nz into sub
domains of blockDim.x × blockDim.y × nz/gridDim.z, each
of which is computed by a CUDA thread block. Note that
we assume that the z dimension is the slowest varying di-
mension. As shown in the code, the grid points in the x-y
planes are computed in parallel by the threads in a thread
block, whereas the computation over the z-direction is swept
sequentially.

The performance of the code on Fermi M2075 and Kepler
K20X GPUs are shown in Figure 3. The size of the grid is
2563. The CUDA version used in our experiments is version
5.0 on Linux kernel 2.6.32 (CentOS 6.4). We only evaluate
the kernel execution time excluding the PCI data transfer
cost. We configure the L1 cache and shared memory parti-
tioning to 48 KB and 16 KB, respectively. The measurement
is done five times and the fastest performance is reported.
In addition to the baseline performance, the figure shows the
upper bound performance that is estimated with the roofline
performance model. The measured bandwidth of the Fermi
and Kepler GPUs are 103 GB/s and 170 GB/s, respectively.
As discussed in Section 2, the compute intensity of the ker-
nel is 1.625, indicating the peak attainable performances are
167 GLFOPS and 276 GFLOPS, respectively.

As shown in the graph, the actual performances of the
baseline version has relatively large gap compared to the

167.3

114.5

276.5

141.0

0

100

200

300

Fermi Kepler

G
F

LO
P

S Version

Estimated Peak

Baseline

Figure 3: Performance of the baseline implementa-
tion on Fermi M2075 and Kepler K20X.

model-estimated peak performances especially on Kepler.
The ratios against the peak for Fermi and Kepler are 66.7%
and 49.7%, respectively.

5. OPTIMIZATIONS
The large gap with the peak performance indicates that

the baseline kernel still has a large room for improvements.
This section presents a series of optimizations focused on
minimizing off-chip memory accesses. Specifically, we first
explain a set of basic optimizations, including loop peeling
and register blocking. Next, we apply spatial and temporal
blocking to exploit the on-chip memories available on the
GPU.

5.1 Basic Optimizations
We optimize the computation by moving the conditional

operations out of the loop. Notice that the conditional eval-
uations on variables i and j are loop independent, so they
can be safely moved before the loop. The conditional opera-
tions on variable k are loop dependent, but peeling the first
and last iterations allows us to remove the conditional oper-
ations from the loop inside. It also uses registers to cache the
points along the Z dimension since they are reused locally
by each thread [2].

5.2 Spatial Blocking with Read-Only Cache
To use the read-only cache on Kepler, we add const and

__restrict__ annotations to the input grid parameter dec-
laration and __restrict__ to the output parameter. This
change should not affect actual native code for Fermi, but
when compiled for Kepler the compiler should generate code
that uses the read-only cache for all loads from the input
grid.

5.3 Spatial Blocking with Shared Memory
Another well-known opportunity for reducing the DRAM

pressure is explicit blocking using the shared memory. As
previously presented by, e.g., [6, 10], each thread block al-
locates a 2-D chunk of shared memory for its corresponding
sub domain and its halo data. Every thread stores its point
value to the shared memory, and the boundary threads that
are located on the boundary of the sub domain are also
responsible for loading the halo data from the global mem-
ory to the shared memory. Since the data reuse between



threads in a thread block only exists for the single X-Y plane
with the z offset being zero, we only need one 2D plane of
(bx + 2) × (by + 2) in the shared memory, where bx and by

represent the dimension of a sub domain. We also change
the configuration of shared memory and L1 cache sizes as
48 KB and 16 KB, respectively.

A potential problem with this implementation is that load-
ing halo data needs conditional operations, which are ex-
ecuted every iteration. In particular, the accesses to the
Y-direction halo points cause branch divergence since only
the two boundary threads among their warps are involved.
Therefore, although it appears that only those boundary
threads issue the global memory load and shared memory
store instructions, the execution overhead can be significant
because every thread in the same warp also issue the same
instructions. In fact, as shown in Section 6, this version
turned out to be less efficient than the above versions.

Phillips and Fatica presented an optimization method that
does not use conditional operations by exploiting the texture
memory [10]. All threads in a thread block redundantly
reads the global memory four times, each of which is diag-
onally shifted to account for the halo points. The cost of
increased number of read transactions and mis-aligned ac-
cesses is minimized by using the texture memory. We also
evaluate this method with our stencil on Fermi and Kepler.

5.4 Spatial Blocking with Warp Specialization
We further extend the shared memory optimization by us-

ing a programming technique called warp specialization [1].
Since warp divergence does not happen if all threads in a
warp take the same control flow, the overhead by the condi-
tional operations and branch divergence can be minimized
by a careful assignment of warps based on control flows as
described below.

We first divide the execution of a thread block to three
control flows: one for the interior points, another for the Y-
direction boundaries, and another for the X-direction bound-
aries. This is realized in our CUDA kernel by creating three
disjoint code paths that correspond to the three flows. The
conditional branch to select each path is done only once at
the beginning of the kernel, so the cost of branches is elimi-
nated. Furthermore, since the warps for the interior points
are not responsible for loading the X-direction halo points,
the branch divergence caused in the previous version is com-
pletely eliminated.

A drawback of the warp specialization is the increased
number of threads per thread block, which has two perfor-
mance implications. First, it requires a larger number of
registers per thread block, which can adversely affect the
number of active threads running on each SM. Since latency
hiding by a large number of active threads is one of the
most important optimizations for achieving high memory
throughput, increase of the register usage can result in lower
overall performance. Second, it could also increase the cost
of thread synchronization within a thread block. Since the
blocking with the shared memory needs two times of thread
synchronization per iteration, the increased cost of thread
synchronization can also reduce the overall performance.

Another drawback of this approach is the increased cost of
code development. Even though some part of the separate
warp groups perform common operations,

5.5 Temporal Blocking with Shared Memory

Finally, we study the effectiveness of temporal blocking
using the shared memory [3, 4, 7, 12, 14, 15]. It has been
shown to be particularly effective for bandwidth-bound com-
putations such as stencils.

Similar to the shared memory version, we use warp spe-
cialization to minimize the cost of halo processing. In this
present work, we only focus on two-way blocking; further
aggressive blocking remains to be studied. Also for sim-
plicity we use overlapped tiling [4] that incurs redundant
overlapped grid points to update for saving DRAM memory
accesses. We speculate that the increased compute cost due
to overlapped tiling can be justified on GPUs, which has
very high flops and bandwidth ratios.

Figure 4 illustrates a flow of each thread block performing
two time steps with only one global memory read and one
write. The colors represent the groups of warps. Filled
regions are areas that are updated by the stencil, while the
dotted regions are only loaded from the global memory for
updating neighbor points. As indicated in the figure, each
thread block uses a 2-D plane of shared memory region of
size (bx+ 4)× (by+ 2), which is updated in place once, and
then stored back to global memory after another update.

As shown in the figure, we use four groups of warps: one
for the interior points (blue region), one for each of the hor-
izontal and vertical halo regions (red and yellow regions),
and another for the four diagonal points (green region). The
number of actual warps for each group depends on the ac-
tual size of the sub domain, although the green region always
uses just one warp. Note that since only four points are ac-
cessed in the green region, only four threads are used among
the 32 threads.

The overhead due to this blocking is two-fold. First, it
increases the computation cost since additional 2(bx× by +
bx×bz+by×bz) points need to be updated when perform-
ing two time steps for each of bx × by × bz sub domains.
We expect that this overhead would be negligible given the
low compute intensity of the stencil. Second, compared to
the non temporal blocking version, it needs to load addi-
tional grid points in the dotted region. Assume that the
blue region is perfectly aligned to a line-size boundary and
that the horizontal dimension is the stride-one dimension.
In this case, the accesses to the yellow dotted regions in
fact has no additional cost compared to the non temporal-
blocked version, since the dotted regions should also be cov-
ered the same cache lines as the filled region. Overall, the
size of the data that are additionally loaded consists of the
red region (bx × bz × 2 × sizeof(float) bytes), the bot-
tom and top blue regions (bx × by × 2 × sizeof(float)
bytes), and the green regions (bz×4×128 bytes). Note that
the cache line size in NVIDIA GPUs is 128 bytes. There-
fore, the reduction of DRAM accesses can be estimated as:

0.5 +
bx× bz + bx× by + bz× 64

bx× by× bz× 2
.

6. EXPERIMENTAL EVALUATIONS
To evaluate the effectiveness of the stencil optimizations,

we measure the performance of the stencil on Fermi M2075
and Kepler K20X GPUs. We use CUDA version 5.0 on
Linux 2.6.32 (CentOS 6.4). Since this paper only focuses on
intra-GPU performance optimizations, we only measure the
GPU kernel performance, excluding the cost of PCI data
transfers. The reported performance numbers are based on
the measured timing that and the cost analysis presented in



Shared Memory	

In-place 
update 	

Z
-
o
rd

e
r 

sw
e
e
pi

n
g	

Global Memory	

X-Y Plane	

bx	

by	

bz	

Figure 4: Temporal blocking execution flow. The
filled regions are updated by the stencil, while the
dotted regions are only read from global memory
for updating neighbor points. Each color represent
a group of warps for the same execution flow.

Table 1: Summary of employed blocking methods.

Register RO cache Shared memory Temporal

Baseline
OPT X
ROC X X
SHM X X
SHM-TEX X X
SHM-WARP X X
TEMP X X X

Section 2. We measure execution time of 100 time steps of
each kernel for five times and use the fastest one to minimize
system noise.

We evaluate five variations of optimized kernels. Specific
blocking methods used in each kernel is summarized in Ta-
ble 1. Note that the baseline version is the same as pre-
sented in Section 4. The Opt kernel uses the optimizations
described in Section 5.1; the ROC kernel uses the read-only
cache as described in Section 5.2; the SHM kernel uses the
shared memory blocking described in Section 5.3; the SHM-
TEX and SHM-WARP also use the shared memory block-
ing but uses the texture-based DRAM loads and warp spe-
cialization; the TEMP kernel is the one with the temporal
blocking. The ROC kernel result is only reported for Kepler
since the read-only cache is not available in Fermi GPUs.
The sizes of CUDA thread block and grid of each kernel as
well as its register and shared memory size are shown in
Table 2. The block sizes are selected among several valid
configurations by an empirical search.

Figures 5 and 6 show the performance of each version on
Fermi and Kepler, respectively. The dashed line shows the
possible peak performance estimated based on the roofline
model discussed in Section 2. Note that it does not account
for the DRAM transaction reduction by temporal blocking,
it can be surpassed by the optimized version with temporal
blocking. The best performances on the Fermi and Kepler
GPUs are 131 GFLOPS and 287 GFLOPS, which are ob-

tained with the OPT and TEMP kernels, respectively.
The results with the Fermi GPU shows that explicit block-

ing with shared memory does not yield performance im-
provements. Without temporal blocking, all explicit shared
memory blocking kernels exhibited degraded performances
by approximately 40%. The DRAM transaction saving by
temporal blocking allowed the TEMP kernel to achieve much
better performance than the SHM kernels; however, it was
still slightly behind the kernel with no shared memory block-
ing. In fact, the limited effectiveness of shared memory
blocking for stencils on the GPU match with our past expe-
riences.

In contrast to the Fermi results, the shared memory op-
timizations were able to achieve performance improvements
with varying degrees. The performance of the SHM-WARP
and TEMP kernels were 232 GFLOPS and 287 GFLOPS,
achieving the speedup of 1.65 and 2.05 times compared to
the baseline. The reason of the better effectiveness of the
SHM-WARP on Kepler still remains to be studied; however,
we speculate that other architectural changes such as the in-
creased number of registers and twice the size of L2 cache
would allow for minimizing the cost of warp specialization.
Further detailed studies will be reported in the future.

Although the temporal blocking version did achieve the
better performance than the non temporal blocking versions,
its improvement turned out not to be as large as expected.
More specifically, the speedup of the TEMP over SHM-
WARP kernels is only 1.23 times. Our preliminary analy-
sis with CUDA Performance Profiler indicates that the cost
of thread synchronization is the largest performance bottle-
neck. More detailed analysis is a subject of our ongoing
study.

Another interesting finding is that the performance gap
between the baseline and most optimized versions is much
larger on Kepler than on Fermi, which implies that the im-
portance of code optimizations for stencils is more profound.
While achieving comparable performance as the TEMP ker-
nel would be fairly challenging for more complex kernels
than the simple stencil studied in this paper, the optimiza-
tion techniques used in the ROC kernel are relatively straight-
forward to apply. In fact, our stencil code generation frame-
work is already able to apply most of the ROC optimizations
automatically [5].

7. RELATED WORK
Stencil computations with regular grids have been one of

the extensively studied types of computations on GPUs be-
cause many of such computations can be improved by taking
advantage of the GPU DRAM bandwidth. Micikevicius re-
ported an implementation method of finite difference stencils
in CUDA with shared memory blocking [6]. Phillips and
Fatica reported a CUDA implementation of Jacobi kernel
for multiple GPUs with MPI. They also presented block-
ing methods with the shared memory and texture memory.
Datta et al. [2] studied stencil performances and optimiza-
tions on various multi-core and accelerator architectures.
Shimokawabe et al. presented a highly scalable phase-field
simulation based on stencil computations [11].

The most common optimizations used in these past stud-
ies are blocking at registers and shared memory. Shared
memory blocking was particularly important in pre-Fermi
generations of NVIDIA GPUs since they were not equipped
with hardware cache memories. However, since the Fermi



Table 2: Details of kernel configurations and resource usage. The values of the TB and Z block columns show
the empirically-found optimal 2-D thread-block size and the Z dimension of CUDA grid for each kernel. The
number of registers and shared memory are per-thread and per-block resource usage, respectively.

Kernel Fermi (SM 2.0) Kepler (SM 3.5)

TB size Z block # registers Shared memory (bytes) TB size Z block # registers Shared memory (bytes)

Baseline 128x1 4 23 0 128x1 16 28 0
OPT 128x1 8 28 0 128x1 8 30 0
ROC 128x1 8 30 0
SHM 128x2 32 27 2080 128x2 16 30 2080
SHM-TEX 64x2 256 32 1056 64x2 1 33 1056
SHM-WARP 64x4 128 27 1056 32x4 1 32 544
TEMP 32x8 16 24 1440 32x8 8 29 1440

114.5

131.4

77.5
88.3 86.1

128.8

0

50

100

G
F

LO
P

S

Version

Baseline

OPT

SHM

SHM−TEX

SHM−WARP

TEMP

Figure 5: Performance of the baseline and optimized
versions on Fermi M2075. The dashed line shows the
peak attainable performance estimated based on the
roofline model with no temporal blocking.

GPU can automatically cache global memory loads at L1
cache, we have observed that explicit blocking with shared
memory is not always beneficial. Our experimental results
reported in this paper also exhibit similar performance be-
havior. The latest generation of NVIDIA GPUs, Kepler,
again changed the memory architecture and now global mem-
ory loads are not cached at L1, so different blocking methods
need to be employed to efficiently run on the new architec-
ture. This paper looked at several optimization methods
and showed that simple implicit blocking with the read-only
cache is indeed very effective, while explicit blocking with
shared memory can further improve the performance.

Temporal blocking has also been extensively studied with
various scientific computations such as stencils [12, 14]. It
has also recently been evaluated on GPUs [3, 4, 7, 15], al-
though mixed performance benefits have been reported. For
example, for 3-D stencils, Zumbusch reported that it did not
improve the performance on both Fermi and Kepler when
compared to the version only with register blocking and no
temporal blocking [15]. Holewinski et al. also reported that
temporal blocking was not beneficial for 3-D Jacobi sten-
cil [4]. In contrast to those previous results, our tempo-
ral blocking achieved an improvement by 20% with the 3-D
stencil problem on the Kepler GPU.

Efficient halo accesses with warp specialization was first
reported by Bauer et al. [1]. Our experiments in this pa-
per confirm similar performance results on Kepler and show
that further speedups can be attainable by combining warp

141.0

190.2

220.0
195.9

166.4

232.3

287.1

0

100

200

300

G
F

LO
P

S

Version

Baseline

OPT

ROC

SHM

SHM−TEX

SHM−WARP

TEMP

Figure 6: Performance of the baseline and optimized
versions on Kepler K20X. The dashed line shows the
peak attainable performance estimated based on the
roofline model with no temporal blocking.

specialization with temporal blocking.

8. CONCLUSION
This paper presented performance studies of a 7-point 3-D

stencil on the recent NVIDIA GPU architectures. Our ex-
perimental evaluations show that the blocking with shared
memory is essential for the stencil to achieve optimal per-
formance on Kepler. This used to be the case for older
pre-Fermi generations of NVIDIA GPUs, but had been con-
sidered unnecessary for stencils with regular grids since the
hardware L1 cache of the Fermi GPU often works quite ef-
fectively. Overall, we achieved approximately 80% of the
estimated peak performance by the roofline model, and even
higher performance with temporal blocking on Kepler. While
our current experiments are limited to the 7-point stencil,
we expect that the results reported here will be applicable
to other 3-D stencils as well.

The shared memory blocking optimizations, however, in-
curred non-trivial cost of code transformation. For example,
while the original stencil can be written with less then 20
lines of code in non optimized CUDA, the fully optimized
kernel takes more than 300 lines of code, resulting in 10-
times increase of code size. Since manual applications to
full-scale stencil applications that consist of, e.g., tens of
much larger stencil kernels would be prohibitively costly, au-
tomated transformation techniques for these optimizations
need to be developed. We plan to extend our high-level



stencil framework, Physis, to automatically generate CUDA
codes with the optimizations shown to be effective in this
study [5].

Acknowledgments
This project was partially supported by a JST, CREST pro-
gram: “Highly Productive, High Performance Application
Frameworks for Post Petascale Computing.”

References
[1] M. Bauer, H. Cook, and B. Khailany. CudaDMA: op-

timizing GPU memory bandwidth via warp specializa-
tion. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’11. ACM, 2011.

[2] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE conference on Su-
percomputing, SC ’08, Piscataway, NJ, USA, 2008.
IEEE Press.

[3] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam,
P. Sadayappan, and S. Verdoolaege. Split tiling for
GPUs: automatic parallelization using trapezoidal tiles.
In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units, GPGPU-6,
pages 24–31. ACM, 2013.

[4] J. Holewinski, L. N. Pouchet, and P. Sadayappan. High-
performance code generation for stencil computations
on GPU architectures. In Proceedings of the 26th ACM
international conference on Supercomputing, ICS ’12,
pages 311–320. ACM, 2012.

[5] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka.
Physis: an implicitly parallel programming model for
stencil computations on large-scale GPU-accelerated
supercomputers. In Proceedings of 2011 International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11. ACM, 2011.

[6] P. Micikevicius. 3D finite difference computation on
GPUs using CUDA. In Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing
Units, GPGPU-2, pages 79–84. ACM, 2009.

[7] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and
P. Dubey. 3.5-D Blocking Optimization for Stencil
Computations on Modern CPUs and GPUs. In Proceed-
ings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’10, pages 1–13. IEEE Computer So-
ciety, 2010.

[8] NVIDIA. CUDA C Programming Guide version 5.0,
2013.

[9] NVIDIA. NVIDIA Kepler
GK110 Architecture Whitepaper.
http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf, 2013.

[10] E. Phillips and M. Fatica. Implementing the Himeno
Benchmark with CUDA on GPU Clusters. In IEEE
International Parallel & Distributed Processing Sympo-
sium, pages 1–10, Apr. 2010.

[11] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Ya-
manaka, N. Maruyama, A. Nukada, and S. Matsuoka.
Peta-scale phase-field simulation for dendritic solidifica-
tion on the TSUBAME 2.0 supercomputer. In Proceed-
ings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’11. ACM, 2011.

[12] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C. K. Luk,
and C. E. Leiserson. The pochoir stencil compiler. In
Proceedings of the 23rd ACM symposium on Parallelism
in algorithms and architectures, SPAA ’11, pages 117–
128. ACM, 2011.

[13] S. Williams, A. Waterman, and D. Patterson. Roofline:
an insightful visual performance model for multicore
architectures. Commun. ACM, 52(4):65–76, Apr. 2009.

[14] D. Wonnacott. Using time skewing to eliminate idle
time due to memory bandwidth and network limita-
tions. In Parallel and Distributed Processing Sympo-
sium, 2000. IPDPS 2000. Proceedings. 14th Interna-
tional, pages 171–180. IEEE, 2000.

[15] G. Zumbusch. Vectorized Higher Order Finite Differ-
ence Kernels. In State-of-the-Art in Scientific and Par-
allel Computing (PARA), 2012.


