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Abstract

Unstructured mesh applications are widely used in science and
industry for simulating phenomena as diverse as turbomachinery
components of jet engines and blood flow in arteries. These are
examples of irregular applications that are difficult to optimize for
accelerator targets such as GPUs. Splitting loops is a standard tech-
nique used for optimizing GPU applications. It breaks down large
complex parallel loops into smaller units whose performance is im-
proved, due to reduced shared memory and register requirements.
In this paper we introduce a general loop splitting methodology
for unstructured meshes, which is able to split a complex loop into
multiple simpler loops. A given loop can be split in different ways,
depending on the loop features and the target GPU hardware. Un-
like previous contributions, the introduced technique permits syn-
thesizing alternative implementation strategies, without the need of
transforming the input program. Experiments on a series of com-
plex loops from an industrial CFD code show the efficacy of our
solution both for NVidia Fermi GPUs and Intel multicore CPUs.
The results show that the version obtained after loop splitting al-
ways performs better on a GPU compared to the original version.
The opposite result is instead obtained for the CPU, as the orig-
inal unsplit version performs better when using large numbers of
threads.

1. Introduction

Computational Fluid Dynamics (CFD) applications using unstruc-
tured meshes dominate the workload of many industrial and aca-
demic HPC systems. Examples include the modeling of blood flow
in the human body, air flow over aircraft and ocean circulation. The
use of unstructured meshes is often essential to correctly simulate
complex geometries in CFD and they are widely used in those cases
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in which structured meshes are unable to provide a suitable model-
ing abstraction.

Despite their attractiveness from a simulation viewpoint, un-
structured mesh applications represent a ‘“hard” case in terms of
realizing computing performance. This is a result of the extensive
use of pointers between mesh elements (e.g., edges to vertices) used
to express the mesh structure, which renders data layout and data
movement a complex problem. This performance issue has been
the subject of a number of research works [3} 15,16, 8} 9].

In this paper we focus on optimizing the performance of un-
structured mesh applications on GPUs. Unlike previous papers ad-
dressing this issue (see [0 18, 9]]), we focus on CFD codes that ac-
cess large amounts of data, in which GPU performance is hard to
achieve and CPUs typically deliver better results. This derives from
two well-known limitations of current GPU technology, namely,
the limited size of shared memory and the small number of regis-
ters available to each GPU thread.

Existing implementations of unstructured mesh applications
introduce several optimizations for GPUs (such as those from
NVIDIA) [6} 8 9]]. One effective optimization improves data lo-
cality by mapping all or part of the mesh data onto shared memory.
This exploits temporal locality; for instance, when iterating over
edges and accessing vertex data stored in shared memory, two
linked edges will access the same vertex. It also improves spatial
locality as data scattered in global memory due to the presence of
pointers (e.g., between edges and vertices) is stored in a contigu-
ous chunks of shared memory. Other optimizations aim to improve
global memory access coalescing, by renumbering the mesh using
standard software (e.g., METIS [L1]). Both optimizations are in-
cluded in the leading stencil code generation tools for unstructured
meshes, namely LISZT [6] and OP2 [8§].

Despite the effectiveness of these “standard” GPU optimiza-
tions on many small applications and benchmarks (e.g., those in
6L 18]]), there are cases in which this is not sufficient to achieve
good performance. An example is industry-strength CFD simula-
tions that have large loops where each iteration needs to access a
large amount of data. The limitation in size of the shared memory
on current GPU technology forces one to partition the iteration set
into small chunks, whose required data can fit into shared mem-
ory. However, this significantly reduces the performance of a GPU,
since the amount of available parallelism is small and is extremely


http://www.exastencils.org/histencils/2015/

difficult to overlap global memory accesses with computation using
typical GPU optimization techniques [3].

To optimize the performance of large loops in unstructured
mesh computations on GPUs, we introduce a general loop splitting
technique. We consider the case of parallel loops over the mesh
applying some user-defined kernel (typically called user kernel).
Using this technique we can synthesize an implementation of a
large parallel loop in which the user kernel is split into multiple
functions (sub-kernels) of equivalent semantics. Each sub-kernel
is carefully outlined from the original user kernel in such a way
that its shared memory requirement is smaller than the original
user kernel. Using this knowledge, the implementation only stages
into shared memory the strictly necessary data for executing each
sub-kernel. This permits maximizing the partition size of the whole
loop.

A fully general approach to loop splitting (often called loop fis-
sion) would be to try to find an optimum cut of the user kernel’s
dataflow graph. This paper focuses on a simpler but very effective
technique which applies to a very common class of loops over the
edges or cells of an unstructured mesh—where the user kernel com-
putes values which are then “pushed,” via indirections, to increment
data associated with vertices.

We validate the effectiveness of our approach by studying mul-
tiple loops derived from an industrial CFD application for simu-
lating the air flow in turbomachinery components of jet engines.
We report on the performance of loop splitting when executing on
a GPU and a CPU. The aim is to understand the possible benefits
of using this approach also when dealing with architectures with
larger caches. In addition, we present a discussion of the possible
impacts of the presented technique when using clusters of GPUs
and CPUs. In our experiments we use the software developed by the
OP2 project as its source-to-source translator is based on ROSE[1],
which provides automatic code outlining that can be used to split
the user kernel into multiple functions.

The main contributions of this paper are as follows.

1. We present an approach to splitting a loop into multiple loops
each with smaller data requirements. From a single complex
loop we can derive alternative implementations (through code
synthesis) by splitting in different ways to achieve optimal
performance. The technique does not require modification of
the user code.

2. We show experimental results of loop splitting on a complex
industrial application on two architectures: an NVIDIA C2070
GPU using CUDA and two Intel Westmere X5660 multicores
with 12 processors using OpenMP. Our aim is to show the
impact of loop splitting on architectures with larger caches.

The rest of this paper is organized as follows. We discuss related
work in Section [2] and the OP2 implementation on GPUs in Sec-
tion [B] Loop splitting is discussed in Section [d} Experimental re-
sults are presented in Section [5]and we conclude with a summary
in Section[@l

2. Related Work

While a number of works on GPU acceleration have focused on
structured-mesh problems [4} [10L 112} 114} |15]], there has been
relatively little work on unstructured mesh codes.

Two major projects have targeted unstructured mesh applica-
tions on diverse target parallel architectures. Liszt [6] is an em-
bedded domain-specific language from Stanford for the solution
of unstructured mesh based partial differential equations (PDEs).
A Liszt description is translated to an intermediate representation
which is then compiled by a dedicated compiler to generate na-
tive code for multiple platforms. The aim is to exploit information
about the structure of data and the nature of the algorithms in the
code and to apply aggressive and platform specific optimizations.

Performance results from a range of systems (GPU, multicore CPU
and MPI-based cluster) executing a number of applications written
using Liszt have been presented in [6].

The OP2 project [8] provides a library interface for C/C++ and
FORTRAN, and it includes the following: declaration of an un-
structured mesh in terms of sets (e.g., vertices, edges) and point-
ers (or maps) between sets (e.g., how edges are linked to vertices);
computation over the unstructured mesh, expressed in terms of visit
of all elements of a set applying some user-defined kernel. OP2 is
an active library that is translated into several languages, including
CUDA [9], OpenMP, OpenCL, MPI and their combinations like
MPI+CUDA. A restricted version of loop splitting for OP2 loops
was presented in a previous paper [3]]. In contrast, in this paper, we
present a generalized loop splitting technique. We use OP2 in this
paper because: (i) we can take advantage of its ROSE compiler in-
frastructure which already supports source code outlining [1/]; and
(ii) we can easily compare our results to previous attempts at opti-
mizing OP2.

Loop splitting has been used for structured grids and other
computations, amenable to compile-time analysis. But, to the best
of our knowledge, this is the first work to present loop splitting for
unstructured meshes that are examples of irregular computations.
Exploiting locality is the key issue for unstructured meshes and
requires an effective runtime solution for achieving loop splitting,
which is what have proposed.

3. The OP2 Implementation on GPUs

In this section, we give a brief description of the relevant OP2 in-
terface and implementation, including all the necessary details re-
quired for understanding the contributions of this paper. The inter-
ested reader can refer to the user manual [7] and other references
giving a full description of the implementation [§].

The OP2 approach to the solution of unstructured mesh prob-
lems involves breaking down the problem into four distinct parts:
(1) sets, (2) data on sets, (3) connectivity (or mapping) between
the sets and (4) operations over sets. This leads to an API through
which any mesh or graph can be completely and abstractly defined.
Depending on the application, a set can represent nodes, edges,
polygonal faces or other elements. Associated with these sets are
data (e.g., node coordinates, edge weights, etc.) and mappings be-
tween sets that define how elements of one set connect with the
elements of another set. In this paper, we omit a full description
of the OP2 interface for space reasons. Instead, we focus on the
parallel loop implementation.

The use of an active library provides application programmers
with the ability to express complex abstractions through an API,
analogous to classical software libraries, but with the benefit of
compiler support to optimize those abstractions accordingly. An
application written once using the API, which is hosted in C/C++ or
FORTRAN, can be translated using the source-to-source compiler
tools provided to deliver performance portability across a diverse
range of multicore and many-core architectures, including CUDA,
MPI, OpenMP, and, in progress, OpenCL. In this section we briefly
discuss the library API, its compile- and run-time infrastructure
before presenting the main contributions of this paper.

3.1 Mesh Declarations

We discuss the OP2 programming model by coding up the sim-
ple unstructured mesh depicted in Fig. [1] that consists of vertices
vy through vg, edges e; through ejq, and five triangular cells (un-
numbered in the figure). The programmer first defines the topology
of the mesh by declaring sets and the relations between these sets.
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Figure 1. Example mesh

Declaration of these sets using the C API can be detailed as fol-
lowd'}

opset triangles = op.declset (5);
op-set vertices = op-decl_set (6);
op_set edges = op_decl_set (10);

To relate the vertices to which each edge is incident, the program-
mer defines an array encoding the relation and informs the library
of the sets to which it is applicable:

int map [J(2] = {{1, 2}, {1, 4}, {1, 3},
{1, 6}, {2, 6}, {4, 3}, {3, 6}, {4, 5},
{3, 5}, {6, 5}};

op-map edgesToVertices =
op-decl_map (edges, vertices, 2, map);

Position 7 in map corresponds to edge L%j The first and second

parameters in op_decl_map state the source and destination sets,
respectively, while the third parameter defines the dimension (or
cardinality) of the relation. The next task of the programmer is to
associate data to the sets of the mesh over which the parallel com-
putation operates. Assume that each vertex in this example con-
tains two double-precision floats (e.g., representing their coordi-
nates) and that each edge contains one single-precision float (e.g.,
representing their weight). A dataset is declared on a set through
an array of the required size, including an appropriate initializer as
follows:

double coordinates
op-dat vertexData =
op-decl_dat (vertices, 2, coordinates);

terezy = {...1

float weights [10] = {...};
op-dat edgeData =
op_decl_dat (weights, 1, edges);

The second parameter in op_decl_dat informs the library of the
cardinality of the dataset per element of the set. Generally, the
implementation does not operate directly on the passed array, since
certain targeted back-end architectures utilize different memory
spaces. For example for the CUDA back-end implementation of the
op_decl_dat, the input data array is transferred from host to device
memory, where it will reside for the rest of the computation, unless
the user explicitly requires a copy back to the host through a call to
the op_get_dat function. This means that there is no data transfer
between host and device, or vice-versa, during the computation.

In effect, the data of a program is sliced into two subsets: that
which belongs to the library (the mesh datasets) and that which
belongs to the sequential program segments. To initialize an op_dat,
the user first initializes a user-level array, i.e., an array outside the

!'For clarity of exposition, we omit certain non-essential parameters in all
the API calls. Details of the API are documented elsewhere [7]. Also, pml
in the library calls stands for “parallel mesh library” which is used in this
version for double-blind review.
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library logical space. Then, the op_decl_dat transfers the array data
to library logical space, where it is initialized. This means that the
user is now no longer able to modify the data encapsulated in an
op_dat without using a library call.

3.2 Parallel Loops in OP2

All the numerically intensive computations in the unstructured
mesh application can be described as operations over sets. Within
an application code, this corresponds to loops over a given set, ac-
cessing data through the mappings (i.e., one level of indirection),
performing some calculations, then writing back (possibly through
the mappings) to the data arrays. The OP2 API provides a parallel
loop declaration syntax (op_par_loop ) which allows the user to
declare the computation over sets in these loops. The computation
per element is defined by the user by providing kernel functions—
written in regular C/C++ or Fortran syntax—which operate on a
single element (i.e., they are element-wise) of a given set, the so-
called loop iteration set.

Let us suppose that, in our running example, we wish to incre-
ment the coordinates of each vertex by the weight of each edge inci-
dent to it, and also calculate the maximum weight across all edges.
Below are functions implementing this functionality per vertex:

void update (double coordinates [],
double coordinates [],
float weights []){
coordinates[0] += weights[0];
coordinates[l] += weights[0];
}
void maxWeight (float *weights, double *max) {
if ( *weights > *max ) *max = *weights;

}

The op_par_loop declaration is then used to specify the data access
pattern for the computation where parallelization is achieved:

op_parallel_loop (update, edges,
op.arg_dat (coordinates, 0, map, OP_INC),
op-arg_dat (coordinates, 1, map, OP_INC),
op-arg_dat (weights, -1, OP_ID, OP_READ))

7

op_parallel_loop (maxWeight, edges,
op.arg_dat (weights, -1, OP_ID, OP_READ),
op-arg_gbl (smax, OP_MAX));

Each parallel loop call takes n + 2 arguments: the first is a pointer
to the user kernel function; the second is the relevant iteration set;
there are n remaining arguments where 7 is the number of param-
eters in the user kernel and argument i corresponds to parameter
i — 2. Furthermore, each argument either relates to a mesh dataset
(op_arg_dat) or to a reduction (op_arg_gbl).

For a dataset argument, the parameters convey the following infor-
mation to the library:

e Access modality of the corresponding parameter. There are four
cases: read-only op_READ, write-only 0op_WRITE, both read and
write OP_RW, or increment op_INC. We indicate coordinates to
be incremented inside update through 0P_INC, whereas weights
is a read-only variable and its access is described through
OP_READ.

Whether the data is accessed via an indirection. Either the data
is directly linked to the iteration set, i.e., it is associated to the
iteration set used by the loop, or it is indirectly accessed, in
which case a mapping must be supplied. For instance, in the first
parallel loop above, coordinates is an indirect dataset since it
is attached to vertices, but the mapping map determines how
vertices can be retrieved while sweeping through edges. On
the other hand, weights is directly accessed and the mapping
is the identify function, indicated by op_1D. When all datasets



are directly accessed, the parallel loop is denoted as direct,
otherwise it is indirect. Thus, the first parallel loop is indirect
whereas the second parallel loop is direct.

If the argument is indirectly accessed, which element of the
relation should be utilized. For instance, since there are two
vertices per edge, the value O in the first op_arg_dat specifies
the first vertex. When there is no mapping, a sentinel value of
—1 is used, as for the op_arg_dat in the second parallel loop.

3.3 Implementation of Parallel Loops

An application written using the library API is parsed through its
compiler and will produce back-end specific code specializing the
implementation of each parallel loop present in the input program.
It will also modify the input program to call the specialized im-
plementations. We are here interested in the GPU implementation
produced by the OP2 compiler, through CUDA. We modity this
implementation in Section [d] The result of this first compilation
phase is then compiled again using a CUDA compiler (e.g., nvce or
the PGI FORTRAN CUDA compiler) and linked against platform
specific back-end libraries to generate the final executable.

For GPUs, the size of the mesh (i.e., of its datasets and maps)
is constrained to fit entirely within the GPU’s global memory. This
means that for the non-distributed memory implementations (i.e.,
single node back-ends) that we consider in this paper, the only
data exchange between the GPU and the host CPU is for the initial
transfer of data to the GPU and the final results out to the host CPU.
No implicit data transfers are issued by the implementation.

The compiler parallelizes an op_par_loop by partitioning its
iteration set and assigning a thread block to each partition. In
unstructured mesh applications the meshes to which a program
is applied are not available at compile-time. The OP2 compiler
produces code that: (i) inspects the actual mesh at run-time, to
produce execution information; (ii) executes the parallel loop using
the produced information. In the next subsections we give details
on these two phases.

How the partitioned data are managed and the execution pro-
ceeds depend on whether the parallel loop is direct or indirect.

For direct parallel loops the iteration set is divided in partitions
of equal size. Each thread in a thread block works on at most [ ]
elements of the assigned partition, where m and n are the sizes of
the thread block and partition, respectively. That is, when the par-
tition size exceeds the number of threads in the block executing it,
the threads operate in successive steps to cover the entire partition.

This execution model is sufficient to avoid data races because,
by definition, none of the data is accessed indirectly and therefore
each thread can only update data belonging to its iteration set
elements. Thus, it is possible to instantiate a number of thread
blocks equal to the number of partitions. This is obviously limited
by the maximum number of blocks that can be launched in parallel
on a GPU.

3.4 Partitioning and Scheduling for Indirect Loops

Also for indirect loops the partitions in which the iteration set is
partitioned are of homogeneous size. Gaining good performance
is in this case restricted by the need to avoid data races between
threads. That is, allowing threads to operate on distinct elements of
the iteration set does not guarantee an absence of data dependencies
due to indirect accesses. OP2 supports data race absence only in
the case when an indirectly accessed data item is incremented. For
instance, when iterating over edges, two threads that are assigned
two different edges, but which are connected by a same vertex,
might incur in a data race when incrementing the data associated
to the same vertex.

OP2 performs coloring to prevent data races. There are two lev-
els of coloring in its implementation: inter- and intra-mini-partition.
The inter-partition coloring is used to avoid conflicts between the
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Figure 2. Data staging phase in CUDA kernels. The threads in a
block coalesce dataset accesses between device and shared mem-
ory.

data shared at partition boundaries. This can happen if two iter-
ations assigned to different partitions increment a same data ac-
cessed through a map. Since the library ensures partitions with
the same color do not share elements retrieved through a mapping,
these can proceed in parallel.

Intra-partition coloring is needed to prevent threads in the same
thread block from incurring data race conflicts. Again, two threads
assigned to the same partition could otherwise increment the same
data accessed through indirections.

3.5 Staging Data into Shared Memory

OP2’s compiler optimizes for both temporal and spatial locality by
staging data between global (device) and shared memory, before
and after user kernel execution.

Temporal locality is achieved when the user kernel accesses
multiple times the same data allocated into shared memory during a
partition execution. Spatial locality is obtained by loading contigu-
ous dataset regions for each partition, which is a consequence of
mesh locality itself (i.e., when elements in the same partition are in-
terconnected). Spatial locality also introduces coalescing of device
memory accesses, through a proper thread coordination scheme, as
detailed below. Data staging includes two phases.

1. Before the user kernel executes, any dataset read whose cardi-
nality per set element exceeds one is brought into the shared
memory. This access to the shared memory maximizes paral-
lelism by mapping successive threads identifiers to successive
shared memory addresses: a thread identified with i accesses
the address base + i, where base is the base address of the
dataset. This is shown in Figure[2] Unary data accesses in direct
loops are already coalesced in global device memory, because
the threads in a block access successive coalesced global mem-
ory addresses. For this case, datasets are not staged into shared
memory. After this first staging phase, all ordered accesses to
datasets performed by threads when executing the user kernel
are coalesced in shared memory.

2. After the user kernel invocation section is complete, any dataset
written is moved back into global memory from the shared
memory, so that executions on the next color of mini-partitions,
or the next parallel loop, have visibility to the computations.
Again, this uses the same coalescing mechanisms discussed in
point (1).

An exception to this rule is when datasets are accessed directly in an
indirect loop. OP2’s implementation avoids staging data with this
kind of access, to minimize the requirements of shared memory.
Instead, indirectly accessed datasets are always staged into shared
memory. Aggressive loop splitting, as described in Sectionfd] could
require a re-thinking of this strategy when splitting a loop into
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loop over colors C //seq
loop over partitions P in C /par
stage in all data for partition p in P
loop over edges e in P /par
tmp = contributions (e)
update ( e(vl), tmp)
update ( e(v2), tmp)
stage out all data for partition p in P
end loop
end loop

Figure 3. Original op_par_loop implementation.

many much simpler loops. This should be subject of future investi-
gations.

Data that is incremented through an indirection has a further
staging phase, that uses local thread variables and is introduced to
maximize the parallelism when executing the user kernel. For each
incremented data value, OP2 allocates a local thread array variable
whose size corresponds to the dimension of the dataset. Each thread
uses its own variables to store the increments to be successively ap-
plied to shared memory variables. As these local variables are pri-
vate to the thread, there is no concurrency control problem, and user
kernels can be executed in parallel by threads. Finally, the threads
apply the increments stored in the local variables to the appropriate
shared memory variables. This step requires concurrency control,
as shared memory data is effectively shared between threads. This
phase is executed by following a coloring scheme in order to avoid
data conflicts.

4. Loop Splitting

The goal of splitting is to reduce the shared memory requirements
of the original code on a GPU. This is achieved by splitting the user
kernel into multiple successive functions (or stages). Each of such
functions must be chosen in such a way that each accesses only a
preferably small subset of the input parameters. Consequently, less
data needs to be allocated to shared memory for each stage. This
results in a smaller overall average shared memory requirement,
which permits fitting more parallel loop iterations into the same
partition. That is, partitions with larger sizes can be allocated to the
same streaming multiprocessor (SM) on a GPU, effectively increas-
ing the parallelism achievable by threads within the same thread
block. This improves overlapping of global memory accesses, and
specifically targets large CFD loops, as discussed in Section|[T]

In this section we show how loop splitting is implemented in
OP2 using the pseudo-code of the loop implementation. We start
by showing the original OP2 implementation of parallel loops (as
described in [8]]), and then we incrementally add splitting. First, we
consider a simple loop splitting technique that takes advantage of
a user kernel property. As discussed, a similar technique was dis-
cussed in [3] but that required an OP2 source to OP2 source trans-
formation step; our solution does not require such a transformation
step. Next, we explain the general loop splitting implementation,
following which we discuss the assumptions and optimality issues.

Figure [3] shows the original implementation of OP2, without
splitting, as discussed in Section [3] Note that we have excluded
some irrelevant details for the description here. The iteration set is
partitioned and partitions are colored to prevent data races. Parti-
tions of the same color are executed in parallel on the GPU (line
2), while partitions of different colors are serialized (line 1). Every
partition is scheduled to an SM and all the needed data is staged
into shared memory (line 3). The threads execute the iterations of
the partition in parallel (line 4) - we assume here the case in which
we are iterating over edges and we increment adjacent vertices, a
common and general pattern in OP2 and CFD codes. Any other
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loop over colors C //seq
loop over partitions P in C /par
stage in all data for contrib
loop over edges e in P /par
tmp = contributions (e)
stage out all tmp data
end loop
end loop

loop over colors C //seq
loop over partitions P in C /par
stage in all data for updatel (tmp)
loop over edges e in P /par

update ( e(vl), tmp)
stage out all data for partition p in P
end loop
end loop

loop over colors C //seq
loop over partitions P in C /par
stage in all data for update2 (tmp)
loop over edges e in P /par
update ( e(v2), tmp)
stage out all data for partition p in P
end loop
end loop

Figure 4. Split op_par_loop by generating three successive loops.
This requires modification of the user code.

OP2 loops can be reduced to this or to a simpler pattern along with
simple code movement.

For each iteration, a thread computes a contribution (line 5) and
then it applies it to the two vertices (lines 6 and 7). Finally, all
modified datasets are staged back from shared memory to global
memory. Notice that using a given edge, the same contribution is
applied to the two vertices, as it is often the case in CFD programs.
The alternative, where two different contributions are computed,
requires no different support from the point of view of splitting.

The work in [3]] describes a splitting technique in which the sin-
gle loop is split into three loops, as shown in Figure ] Consider
that the user kernel can be split into three phases: (1) computation
of the contribution; (2) update of the first vertex with the contribu-
tion; and, (3) update of the second vertex with the contribution. We
can thus derive three loops with equivalent semantics of the origi-
nal one which share a common dataset associated to edges holding
the contribution. Unfortunately, this scheme requires us to stage
the contributions three times between global and shared memory,
resulting in high overhead.

In contrast to the scheme in [3]], we describe here the case in
which the initial loop is not transformed into multiple loops; the
splitting happens as an alternative code synthesis. In the improved
implementation of the loop, shown in Figure [5] the partition loop
body (lines 1 and 2) now alternates the three phases (contribution
calculation, first and second updates). Unlike the previous split-
ting technique, the contribution temporary dataset is kept in global
memory and accessed directly during the computation of a parti-
tion. That is, it is not staged between global and shared memory.

This scheme reduces the shared memory requirements for the
loop because strictly only the data needed in each step is staged
into shared memory. For instance, as the incremented dataset is
not used during the contribution calculation (OP_INC semantics),
it can be omitted during the initial stage in phase (line 3). Also,
after computing the contribution, all data not required in the update
steps can be simply overwritten, and we can use the whole shared
memory for the vertex data alone.
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loop over colors C //seq
loop over partitions P in C /par

stage in all data for contrib

loop over edges e in P /par
tmp (e) = contrib (e)

stage in all data for updatel

loop over edges e in P //par
update ( e(vl), tmp(e) )

stage out all data for updatel

stage in all data for update?2

loop over edges e in P /par

update ( e(v2), tmp(e) )
stage out all data for update2
end loop
end loop

Figure 5. Split of contribution calculation and vertex updates.

If the contribution for the two vertices is different, then their
computation falls in the first step. Note that the temporary data has
now been promoted from a local user kernel variable, to an array
associated to edges. As our target is the reduction of shared memory
requirements, this is allocated into global memory.

Under this new scheme we do not need to allocate the vertex
data to be updated into shared memory while computing the con-
tribution. Also, all data needed for the contribution need not to be
allocated during the update. This means that the shared memory
requirements for the three steps is smaller than the original loop.

The last version that we describe in Figure[g]splits the contribu-
tion calculation in successive loops. We assume that the function
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contrib can be split into multiple functions, say contribl, ..., contribN.

This is done using automatic support such as that provided by
ROSE [1] for outlining code sections into functions. The splitting
is similar to the previous case, where at each stage we stage into
shared memory only the data required by each successive contri-
bution function. For instance, we initially stage in all data for the
evaluation of the first contribution at line 3. The computed tempo-
rary data after each contribution is associated to edges and stored,
as above, into global memory. This temporary data can be produced
by a contribution calculation, and then reused by a successive cal-
culation, or in the vertex update step.

The goal of this is to further reduce the shared memory re-
quirements for each of the contribution calculation, which results
in larger total partition sizes. Of course this comes at the cost of
the need to manage temporary datasets (associated to edges) which
are stored in global memory. The resulting trade off between reduc-
ing shared memory requirements (thus increasing the partition size)
and the added global memory traffic is what decides the particular
best loop splitting strategy. Note that this strategy, in general, de-
pends on the application characteristics along with parameters of
the target GPU architecture. In this paper, we present a methodol-
ogy to address this issue for the case of large unstructured mesh
applications.

5. Experiments

In this section, we present the performance results for the first
simple loop splitting technique. Our aim is the study of an optimal
loop splitting strategy to be applied in a fully-automated optimizing
compiler. For this purpose, we study the effects of loop splitting on
two different architectures.

We used a CFD simulation software developed at Rolls-Royce
for the simulation of turbomachinery engines, called HYDRA.
Performance studies of HYDRA have been reported in [3]. We
apply the loop splitting technique to six loops resulting from the
simulation of a standard CFD test case, called NASA Rotor 37.

loop over colors C //seq
loop over partitions P in C /par
stage in all data for contribl
loop over edges e in P /par
tmpl (e) = contribl (e); tmp(e) =
stage in all data for contrib2
loop over edges e in P //par
tmp2 (e) = contrib2 (e); tmp(e) += tmp2(e);

tmpl (e);

stage in all data for contribN
loop over edges e in P /par
tmpN(e) = contribN (e); tmp(e) += tmpN(e);
stage in all data for updatel
loop over edges e in P /par
update ( e(vl), tmp(e) )
stage out all data for updatel
stage in all data for update2
loop over edges e in P //par
update ( e(v2), tmp(e) )
stage out all data for update?2
end loop
end loop

Figure 6. Split of contribution calculation in multiple functions.

For the simulation, we use a triangular mesh with approximately
2.5 million edges and the simulation is based on double-precision
floating point operations. The studied loops all iterate over an edge
set (edges or boundary edges), and they follow the described CFD
loop pattern: they compute a contribution which is then applied
to the two adjacent vertices (same contribution). We study four
loops and we report here the size in byte of indirectly and directly
accessed datasets because of its relevance with respect to the loop
splitting technique:

e Accumulation over edges (Accu), which access 680 bytes of
datasets indirectly for each iteration. The incremented datasets
are 416 bytes in size per iteration.

¢ Contribution on edges (Edgecon), which accesses indirectly
528 bytes and directly 24 bytes for each iteration. The incre-
mented datasets are 384 bytes in size per iteration.

e Viscous or smoothing fluxes calculation (Vflux), which ac-
cesses indirectly 808 bytes and directly 24 bytes for each itera-
tion. The incremented datasets are 96 bytes in size per iteration.

e Inviscid flux calculation (Iflux), which accesses indirectly 328
bytes and directly 24 bytes. The incremented datasets are 96
bytes in size per iteration.

The involved user kernels for the described loops can be as complex
as including up to 600 double precision floating point operations.

We performed experiments using an NVIDIA GPU C2070, run-
ning the original and the split versions of each loop. Similar results
are also shown in [3] and we do not expect relevant differences.
Unlike previous contributions, in this paper we run the same ex-
periments on an dual 6-core Intel Westmere X5660, to understand
the applicability of the studied technique on different architectures.
Table[T]gives details of the used architectures. The aim of the com-
parison is to understand if loop splitting is a desirable feature also
on architectures with large caches.

For the GPU experiments we maximized the partition size in
order to maximize parallelism on each SM on the NVIDIA GPUs.
On the CPU we tested two partition sizes for every loop: 128 and
512. We expect loop splitting to influence data locality, and the
choice of two highly different partition sizes permit us to study
this effect. To maximize performance and stability of execution



Table 1. Single node CPU system specifications

Node Cores/node Mem. Compiler [flags]
System (Clock/core) /node
2 xIntel 12[24 SMT] 24GB IFORT 11.1
Xeon X5650 (2.67GHz) -openmp -O2 -parallel
(Westmere)
Tesla C2070 448 6.0 GB pgfortran 12.2 -O4
(1.15GHz) nvee 4.1 -03
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Figure 7. Loop performance of NASA Rotor 37 with 2.5 million
edges on a GPU. This version of the loops is not tuned w.r.t. the
block size.

times we used the Intel thread affinity support in scatter mode,
using the two Westmere nodes as a single 12-core processor. As
we execute in parallel, only partitions that do not share data, on
different threads, expect this to maximize main memory bandwidth.
The results are for experiments with parallelism degree (number
of OpenMP threads) equal to 1, 2, 6 and 12. We do not show the
remaining degrees for space reasons.

Figures [7] and [§] show the results for the baseline and split
versions of the studied loops. The two graphs differentiate in the
fact that the first one does not optimize w.r.t. the CUDA block,
while the second one does. As it can be noticed, the impact of
loop splitting is higher when the CUDA block is not optimized.
This means that loop splitting alleviates the slowdown given by
a wrong choice the CUDA run-time configuration parameters for
the studied loops. The maximum reported improvement of loop
splitting is 34.5% when the CUDA thread block is not optimized,
and 22.5% when the CUDA thread block is optimized.

For the CPU experiments we show results in Fi gure|§|(1 thread),
Figure [T0] (2 threads), Figure [T1] (6 threads), and Figure [12] (12
threads). As expected, the impact of loop splitting is smaller on
CPUs compared to GPUs. We can notice that we obtain some per-
formance improvements for the Vflux and Iflux loops with small
parallelism degrees. This is due to the large number of bytes re-
quired for each iteration of these two loops compared the size of
incremented datasets; thus, splitting these loops highly improves
the two increment loops as we can now run them with a large par-
tition size compared to cases in which large datasets need to be
incremented. By increasing the parallelism degree and by scatter-
ing the threads over the two multicore nodes we amortize the im-
pact of loop splitting for the two loops as more threads access less
and different data. From these results we can conclude that, except
for some larger and specific cases when using small parallelism
degrees, a fused version of loops is always to be preferred. An op-
timizing compiler should do its best to maximize loop fusion, e.g.
by using mesh-independent techniques (e.g. see [2]]) or by applying
sparse tiling [13].
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Figure 8. Loop performance of NASA Rotor 37 with 2.5 million
edges on a GPU. This version of the loops is tuned w.r.t. the block
size.
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Figure 9. Loop performance of NASA Rotor 37 with 2.5 million
edges on a CPU with 1 OpenMP thread. The graph shows execution
time of each loop in its original and split version

6. Conclusion

In this paper, we have described our study on general loop splitting
techniques for unstructured mesh applications. The aim is the op-
timization of the shared memory requirements for large loops, i.e.,
loops accessing large quantities of data for each iteration.

Based on the OP2 implementation of parallel loops over an un-
structured mesh, we derived multiple versions. The first technique
is a simple splitting of the original loop into three loops. It is based
on a common user kernel property in CFD applications in which
the same contribution is applied to multiple indirectly accessed
datasets. In this case, the contribution calculation and the update of
the indirect datasets can be re-mapped to successive loops. How-
ever, this requires user code modification and multiple staging of
contributions between global and shared memory on a GPU.

‘We have shown that this can be avoided by synthesizing a single
loop implementation for the original parallel loop, but following a
split behavior. The first loop splitting technique alternates contribu-
tion calculation and updates while executing a same partition. As
a consequence, the input user code does not require modification,
and the contributions can be kept in global memory and we can rely
on the L1 cache on a GPU. The general loop splitting technique as-
sumes that the contribution calculations can be split into multiple
successive functions. The related code synthesis splits the contri-
bution calculation for each partition further by staging into shared
memory only the necessary data for each sub-function in which
the contribution is divided. The key is that each function requires a
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Figure 10. Loop performance of NASA Rotor 37 with 2.5 million
edges on a CPU with 2 OpenMP threads. The graph shows execu-
tion time of each loop in its original and split version
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Figure 11. Loop performance of NASA Rotor 37 with 2.5 million
edges on a CPU with 6 OpenMP threads. The graph shows execu-
tion time of each loop in its original and split version

smaller number and size of indirectly addressed data, to be stored
into shared memory. This permits maximizing the overall partition
size, as less data is required to be allocated on the shared memory
at the same time.

We have presented experimental results for four complex loops
for the first simple splitting on a GPU to validate the efficacy of
our approach. On GPUs, we obtained improvements of up to 34.5%
over the baseline implementation. We have also studied the effect of
loop splitting for the same loops on a CPU, featuring larger caches,
to understand the strategy that is to be followed by an optimizing
compiler on these architectures. These results demonstrate that,
except in some corner cases with small parallelism degrees, the
fused version of loops always performs better that the split ones
on CPUs.
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